support@kaust.edu.sa
+966 (12) 808-3463
  • العربية
logo-black
  • Home
  • People
    • Current
    • Alumni
  • Publications
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
    • 2012
    • 2011
    • 2010
    • 2009
  • Research
    • Current Research
  • Collaboration
  • News
  • Facilities
  • Join us
  • Contact us
  • Conferences
Semiconductor and Material Spectroscopy Laboratory
breadcrumb-bg

High-quality III-nitride films on conductive, transparent (201)- oriented β-Ga2O3 using a GaN buffer layer

  1. Publications
  • Clear filters

High-quality III-nitride films on conductive, transparent (201)- oriented β-Ga2O3 using a GaN buffer layer

by Mufasila Mumthaz Muhammed, M. A. Roldan, Y. Yamashita, S.-L. Sahonta, Idris A. Ajia, K. Lizuka, A. Kuramata, C. J. Humphreys & I. S. Roqan
Year: 2016

Bibliography

High quality III-nitride films on conductive, transparent (201)-oriented-Ga2O3 using a GaN buffer layer. M.M. Muhammed, M.A. Roldan, Y. Yamashita, S.L. Sahonata, I.A. Ajia, K.Lizuka, A. kuramata, C.J. Humphrey, & I.S. Roqan. 2016, 6:29747, Scientific Reports.

Abstract

​We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

Keywords

Inorganic LEDs Thin Films
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • +966 (12) 808 4340
  • Iman.roqan@kaust.edu.sa
  • 4700 King Abdullah University of Science and Technology

    Building 3, Level 3

    Thuwal 23955-6900

    Kingdom of Saudi Arabia

Quick links

  • Join us
  • Contact us

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...