The electronic and magnetic properties of oxygen- and sulfur-passivated one-dimensional armchair GaN nanoribbons (A-GaNNRs) are revealed using both first-principles density-functional theory and ab initio molecular dynamics simulations. We explore that an applied external electric field can further modulate the electronic properties of both pristine and passivated A-GaNNRs, thus changing their properties (semiconducting–metallic–half-metallic). A-GaNNRs of 0.9–3.1 nm width are subjected to further investigations, which reveal that sulfur termination transforms pristine A-GaNNRs from direct into indirect band gap semiconductors, without affecting their nonmagnetic nature. On the other hand, oxygen passivation introduces spin-polarized behavior with a finite magnetic moment. Magnetism characteristics in both bare and sulfur-passivated A-GaNNRs are induced by applying a critical electric field along the …
Keywords
Modulating Electronic Structures of Armchair GaN Nanoribbons by Chemical Functionalization under an Electric Field Effect