support@kaust.edu.sa
+966 (12) 808-3463
  • العربية
logo-black
  • Home
  • People
    • Current
    • Alumni
  • Publications
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
    • 2012
    • 2011
    • 2010
    • 2009
  • Research
    • Current Research
  • Collaboration
  • News
  • Facilities
  • Join us
  • Contact us
  • Conferences
Semiconductor and Material Spectroscopy Laboratory
breadcrumb-bg

Sub-quantum-well influence on carrier dynamics in high efficiency DUV dislocation-free AlGaN/AlGaN-based multiple-quantum-wells

  1. Publications
  • Clear filters

Sub-quantum-well influence on carrier dynamics in high efficiency DUV dislocation-free AlGaN/AlGaN-based multiple-quantum-wells

by Idris A. Ajia, Dhaifallah Almalawi, ·        Yi Lu, Sergei Lopatin, Xiaohang Li, Zhiqiang Liu, Iman S. Roqan
Year: 2020

Abstract

We explore the effect of the subwell centers and related carrier dynamics mechanisms in dislocation-free DUV AlGaN/AlGaN multiple quantum wells (MQWs) homoepitaxially grown on an AlN substrate. Cross-sectional imaging and energy-dispersive X-ray compositional analyses using scanning transmission electron microscopy (STEM) reveal epitaxial layers of very high crystalline quality, as well as ultrathin Al-rich subquantum barrier and subwell layers at the interface between the wells and the barriers. Carrier dynamic analyses studied by power- and temperature-dependent time-resolved and time-integrated photoluminescence (PL) and PL excitation measurements, as well as numerical simulations, reveal the carrier repopulation mechanisms between the MQWs and subwell sites. This advanced analysis shows that the subwell/sub-barrier structure results in additional exciton localization centers, enhancing the internal quantum efficiency via staggered carrier repopulation into the MQWs to reach a maximum of ∼83% internal quantum efficiency, which remains high at high injected carrier densities in the droop region. Both experimental and numerical simulation results show that the slight efficiency droop can be due to Auger recombination, counteracted by a simultaneous increase in radiative recombination processes at high power density, demonstrating the role of the subwells/sub-barriers in efficiency enhancement.

Keywords

Sub-quantum-well influence on carrier dynamics in high efficiency DUV dislocation-free AlGaN/AlGaN-based multiple-quantum-wells
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • +966 (12) 808 4340
  • Iman.roqan@kaust.edu.sa
  • 4700 King Abdullah University of Science and Technology

    Building 3, Level 3

    Thuwal 23955-6900

    Kingdom of Saudi Arabia

Quick links

  • Join us
  • Contact us

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...